
BUSGEN108/CS171/DATASCI161/ECON115 Fall 2025
Causality, Decision Making, and Data Science Homework 0

Instructions: Please complete this problem set on your own. You may either type or
very legibly write your solutions, and upload them on Gradescope by 11:59pm on Monday
September 29.

Note: This homework is graded for completeness, not correctness. The point is for us
(and you) to assess your statistics background relevant to this course.

For this problem set, consider the following scenario. There are N = 8000 undergrad-
uates at Stanford. We’d like to understand how many caffeinated beverages each student
drinks before 2pm each day. To do this, we chose n = 100 random undergraduates (with
replacement) and asked them. We got1 the following data:

Number of caffeinated bevs Number of students

0 20
1 15
2 40
3 20
4 5

1. Let Xi, for i = 1, . . . , n, be the number of caffeinated beverages the i’th student in our
sample consumed.

(a) Let µ be the average number of caffeinated beverages consumed before 2pm out
of the entire undergraduate population. In terms of the Xi, give an unbiased
estimator µ̂ for µ. What is µ̂ with the data above?

Solution

As we saw in class, µ̂ = 1
n

∑n
i=1Xi is an unbiased estimator of µ. Plugging in

the data above, this is

µ̂ =
1

100
(15× 1 + 40× 2 + 20× 3 + 4× 5) = 1.75 caffeinated beverages.

(b) Let σ2 be the variance of the number of caffeinated beverages consumed before
2pm out of the entire undergraduate population. In terms of the Xi, give an
unbiased estimator for σ2. What is your estimate of σ2 with the data above?

1Disclaimer: these data are made up. In future problem sets, you’ll be working with real data!
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Solution

An unbiased estimator of σ2 is the sample variance, which is

s2 =
1

n− 1

n∑
i=1

(Xi − µ̂)2,

where µ̂ is as in part (a). In our case, this is

s2 =
1

99

(
20(0− 1.75)2 + 15(1− 1.75)2 + 40(2− 1.75)2 + 20(3− 1.75)2 + 5(4− 1.75)2

)
≈ 1.3.

2. In this question, we’ll compute (analytically) standard errors for µ̂ from the previous
problem. One way to do this is (a) work out what the variance of µ̂ should be, and
then (b) plug in any estimates we need to do get a number. To get standard errors,
we then take the square root of our estimate of Var(µ̂).

(a) Explain why Var(µ̂) = 1
n
σ2, where σ2 is as in the previous problem. (We are

looking for a mathematical derivation / justification).

Hint: If X and Y are independent, then Var(X + Y ) = Var(X) + Var(Y ).

Solution

We have

Var(µ̂) = Var

(
1

n

n∑
i=1

Xi

)

=
1

n2

n∑
i=1

Var(Xi)

=
1

n
Var(X),

where X is the number of caffeinated beverages for a random student in the
whole population. That’s because, individually, each Xi is distributed the
same as X. But σ2 = Var(X) by definition. Above, we used the fact that the
Xi’s are independent to bring the Variance inside the sum.

(b) Use your answer to the previous part to obtain a standard error for your estimate
of µ̂ in Question 1. (We are looking for a number; show your work).
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Solution

From the above, we know that Var(µ̂) = 1
n
σ2. We don’t know σ2, but we

estimated it by s2 ≈ 1.3 in the previous problem. So plugging that in, we get

√
Var(µ̂) ≈

√
1.3

100
≈ 0.114.

(c) What does your answer to part (b) tell you about the accuracy of your estimate
µ̂? In particular, do you think that µ̂ is a “good” estimate for µ in this case?

Solution

It tells us that we would expect our estimate of 1.75 may be off by something
in the ballpark of 0.11. (As we’ll see in Question 4, plus or minus about twice
that is a good confidence interval in this case). Since 0.11 is a lot less than
1.75, perhaps we are happy with this estimate, although it depends on the
question we are trying to answer.

3. In this question, we’ll discuss another way to estimate standard errors, which is boot-
strapping (also called resampling). The way this works is the following. As above, let
X1, X2, . . . , Xn be our samples of number of caffeinated beverages.

Consider the following procedure, which produces an estimate for Var(µ̂).

• For t = 1, 2, . . . , T (where T is a large number, say 1, 000 or so):

– draw Y
(t)
1 , Y

(t)
2 , . . . , Y

(t)
n with replacement at random from X1, X2, . . . , Xn.

– Compute µ̂∗
t from the samples Y

(t)
1 , . . . , Y

(t)
n in the same way that you com-

puted µ̂ from X1, . . . , Xn.

• Now, you have T quantities µ̂∗
1, µ̂

∗
2, . . . , µ̂

∗
T .

• Estimate the variance of µ̂ by the sample variance of {µ̂∗
1, µ̂

∗
2, . . . , µ̂

∗
T}.

We aren’t going to ask you to implement this on this problem set (that’s best done
with a computer, not by hand). Instead, answer the following questions.

(a) Have you seen bootstrapping before? (“No” is a perfectly fine answer).

Solution

Yes for us, but “No” can also be correct :)

(b) Whether or not you’ve seen it before, why do you think this might be a good idea
for estimating Var(µ̂). Intuitively, what’s going on here?
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Solution

In a perfect world, we’d estimate Var(µ̂) according to the procedure above,

except where Y
(t)
i are all chosen iid from the original population of N under-

graduates. But of course we don’t have that data. So instead we approximate
what that might look like, by resampling from the data that we do have.
This gives us a sense of how much our estimate of µ̂ would change, if we had
selected a slightly different sample of n students.

(c) What should you do to the output of the procedure above to estimate the standard
error for µ̂?

Solution

Since the above outputs an estimate of Var(µ̂), we should take the square root
to get an estimated standard error.

(d) (BONUS: This problem isn’t required, but might be fun if you know how to
program.) Implement the procedure above and estimate the standard error for µ̂.
How does this compare to your estimate of the standard error in Question 2?

Solution

We implemented it and got a standard error of about 0.1. So it’s pretty close
to question 2.

4. In this question, we’ll analytically construct confidence intervals for µ̂. The first ob-
servation is that µ̂ is a sum of independent random variables. (If the µ̂ that you got
in Question 1 isn’t a sum of independent random variables, go back and think about
that question again...) The Central Limit Theorem implies that the distribution of µ̂
should be approximately Gaussian, with mean µ, and variance Var(µ̂).

(a) For a standard Gaussian Z ∼ N (0, 1) (that is, Z is a Gaussian random variable
with mean zero and variance one), a 95% confidence interval is [−1.96,+1.96].
This means that the probability that Z is outside that interval is at most 5%.
What is a 95% confidence interval for a random variable W ∼ N (µ̃, σ̃2), with
mean µ̃ and variance σ̃2?

Hint: Think about what the pdf of N (µ̃, σ̃2) looks like. To get from the pdf of
N (0, 1) to the pdf of N (µ̃, σ̃2), we “squish” the pdf by a factor of σ̃, and then shift
it by µ̃ (see the picture below). What does that transformation do the confidence
interval?
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Solution

The mean is µ̃ instead of 0, so the confidence interval should be centered at
µ̃. Following the hint, we need to “squish” the confidence interval by a factor
of σ̃. So we should have

[µ̃− 1.96 · σ̃, µ̃+ 1.96 · σ̃].

(b) Based on your answer above, give a 95% confidence interval for µ̂ in our running
example. We are looking for an interval with real numbers (like “[0.26, 23.33]”,
but more correct), along with an explanation.

Solution

Based on the above, we should plug in µ̃ ← µ̂ = 1.75, and σ̃ ← 0.11, our
estimate for the standard error of µ̂ from earlier. (If you wanted to plug in an
estimated standard error that you got from bootstrapping, that’s okay too).
So we get

[1.75− 1.96 · 0.11, 1.75 + 1.96 · 0.11] ≈ [1.53, 1.97].

5. (BONUS. This question is more open-ended. It is optional, but worth thinking
about!)

In Question 3 we explored bootstrapping. You can use the same technique to compute
confidence intervals! Propose a way to use bootstrapping to come up with confidence
intervals, and explain why it should be a good idea. (Note: there are several ways to
do this. In the solutions to this problem set we’ll give one way for your reference.)

Solution

The basic idea is to resample with replacement to get µ̂∗
1, . . . , µ̂

∗
T as before. But

instead of looking at the sample variance to compute standard errors, we can look at
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the whole distribution of {µ̂∗
1, . . . , µ̂

∗
T}, and see what a 95% (or whatever) confidence

interval would have been for that distribution. Here is one way to do it:

• Compute µ̂∗
1, . . . , µ̂

∗
T as before.

• For each t = 1, . . . , T , compute δt = µ̂∗
t − µ̂.

• Sort the values δi. Let δ∗1 be the value at the 2.5’th percentile, and δ∗2 be the
value at the 97.5’th percentile.

• Return [µ̂− δ∗2, µ̂− δ∗1] as a 95% confidence interval.

This is sometimes called the “pivotal interval” or the “empirical interval” or the
“basic interval.” Another natural thing to do is just to take a 95% confidence inter-
val directly from the distribution of the µ̂∗

t ; that’s called the “percentile interval.”a

There are other fancier ways to do it too.

aIn general, the pivotal interval is a better idea if you think that the sampling distribution is
approximately symmetric around the true parameter, but are worried that your estimator may
be biased. The percentile interval is a better idea if you expect that the sampling distribution
isn’t symmetric, and that your estimator is unbiased.

6. You are curious about how caffeine consumption varies by demographic. Some people
you talk to think that seniors drink more caffeinated beverages than freshman, on
average. Others think that the number of caffeinated beverages for these two groups
come from the same distribution. Unfortunately, you didn’t record the class year in
the data set at the beginning of the problem set, so you do a quick test: you ask five
random freshman and five random seniors. Suppose you see:

• Freshmen: [1, 1, 0, 1, 0]

• Seniors: [3, 4, 2, 2, 3]

Comparing the means of your samples, it does seem that seniors are more caffeinated
than freshman, but how can you be sure with only five samples in each group?

(a) If the groups were larger, so that the central limit theorem might apply, how would
you decide if the hypothesis “The number of caffeinated beverages for freshmen
and seniors are drawn from the same distribution” is likely true or not?

Hint: We saw in Problem 4 how to construct confidence intervals for Gaussians. If
the samples were bigger, the central limit theorem would imply that the random
variable µ̂F − µ̂S is approximately Gaussian. (Here, µ̂F is the sample mean for
freshman, and µ̂S is the sample mean for seniors; the randomness is over the
random choice of students). What is its mean and variance? How could you use
that to construct a confidence interval? What would that confidence interval tell
you about this hypothesis?
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Solution

Let H0 be the hypothesis that µF − µS = 0, where µF is the average for frosh
and µS is the average for seniors. Let µ̂F and µ̂S be our sample means. Let
s2F and s2S be the sample variances. Then the CLT implies that µ̂F − µ̂S is
approximately Gaussian, with mean µF − µS. We claim that the variance is
σ2
F

nF
+

σ2
S

nS
, where nF and nS are the number of freshman and seniors samples,

respectively. (To see this, we do a similar calculation to the one you did in

Problem 2). Thus, we can estimate the variance by
s2F
nF

+
s2S
nS

. So we can
construct a 95% confidence interval like we did in a previous problem:

(µ̂F − µ̂S)± 1.96 ·

√
s2F
nF

+
s2S
nS
.

If 0 does not lie in this confidence interval, we reject.

(b) Given that the groups are small, and the central limit theorem may not apply,
what can you do?

Hint: Imagine the two data sets were from the same population, as in the hy-
pothesis. How likely would it be that these heights were split up between the two
groups in this way?

Solution

We could use resampling, as we did in the previous problem, although we
don’t recommend that for samples so small. However, we can reason about
this directly, following the hint. Suppose that all these numbers did come from
the same distribution. Notice that all of the Seniors numbers are bigger than
all of the Freshman’s numbers. What are the odds of that happening, if they
all came from the same distribution? It’s at most 1

(10
5 )

. That’s because there

are
(
10
5

)
ways to split 10 numbers into two groups, and only one way to do so

that puts all of the numbers ≥ 2 in one group and all of the numbers ≤ 1 in
the other group. Since 1

(10
5 )
≈ 0.004 is very small, we can confidently reject

the null hypothesis that all these numbers came from the same distribution.
(In case you are interested, this counting method illustrates the logic behind
the Mann-Whitney U test, a nonparametric statistical test that performs a
similar analysis on the ranks of the combined data.)
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